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ABSTRACT 
 

 

This thesis explores the possible gains and discusses the constraints of a 

communications system that uses a ship to unmanned aerial vehicle (UAV) radio 

frequency (RF) link paired with a UAV to satellite free space optic (FSO) link to 

accomplish satellite communications.  Analysis shows that a data rate of 2 gigabits per 

second (Gbps) with a  probability of bit error can be attained by a shipboard 

system with a relatively small antenna and power supply if an FSO-enabled UAV is used.  

An experiment demonstrated that the addition of an FSO link and additional routing does 

not reduce the performance of a slower data rate RF link.  The findings indicate that a 

composite RF and FSO ship-UAV-satellite system can

61 10−⋅

 be used within the 

Transformational Communications Architecture (TCA) and with the Navy’s FORCEnet 

to enable network-centric operations (NCO). 
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EXECUTIVE SUMMARY 
 
 

The need for high data rate communications has increased dramatically from 

Operation Desert Storm in 1991 to Operation Enduring Freedom and Operation Iraqi 

Freedom in 2003  [1].  A variety of enabling technologies and supporting communication 

architectures are being developed to meet this ever increasing requirement.  The overall 

result of these undertakings will increase shared awareness of the battlespace and make 

network-centric operations possible. 

Free space optics (FSO) is an attractive technology for high data rate 

communication.  FSO provides greater bandwidth, smaller beam divergence angles, and 

smaller antennas than traditional microwave links.  This yields a potential for higher data 

rate across the link and lowers the probability that an adversary can intercept it.  A 

drawback to using FSO on the earth’s surface is the attenuation caused by the 

atmosphere.  Molecules and particles in the atmosphere attenuate electromagnetic 

radiation to varying degrees through scattering and absorption.  Thick clouds and fog 

drastically reduce the transmission of optical frequencies, making FSO unreliable if it is 

to be used in all weather conditions.  The attenuation effects can be reduced by increasing 

the altitude of the FSO link to the thinner upper atmosphere or space.   

In order to communicate reliably to terrestrial units in all weather conditions, a 

radio frequency (RF) link is needed.  Since RF links do not degrade through clouds or 

foliage as much as FSO links, and link margin increases when the path distance 

decreases, using a UAV as a relay allows increased data rate and allows FSO 

transmission to a satellite.  In this scheme, the benefits of FSO are realized and the 

disadvantages are mitigated.   

This proposed relay system offers a practical means to include mobile ships and 

ground units within the TCA.  By providing these users with large amounts of bandwidth, 

NCO and FORCEnet are enabled, thus making Sea Power 21 realizable.  This thesis 

explores the possible gains and discusses the constraints of a ship-UAV-satellite 

communications system.  Analysis specifies that a data rate of 2 Gbps with a 61 10−⋅  

probability of bit error can be attained with a relatively small antenna and power supply if 
xv



xvi

an FSO-enabled UAV is used.  An experiment demonstrated that the addition of an FSO 

link and additional routing did not reduce the performance of a slower data rate RF link. 
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I. INTRODUCTION 

The ability to create a shared awareness for all war fighters and decision makers 

whether during peacetime, crisis, or war, is a key advantage for a military force.  The 

wide variety of user platforms, mobility requirements, and service and coalition 

differences make communication, let alone high speed data transfer, a nontrivial task.  

Real-time command and control and the capability to provide actionable intelligence 

from a remote headquarters to tactical units on the front lines could be a tremendous 

benefit in any conflict.  [2] 

Satellite communication systems allow wireless global contact and collaboration.  

Deployed naval, airborne, and expeditionary ground forces use satellite links in order to 

communicate and to receive and transmit information.  Unfortunately, the capacity of 

these links is limited in data rate as well as the number of users who can access them.   In 

a large regional conflict, the accessible satellites in the area become a high demand asset.  

This congestion restricts users’ high data rate reach back communication.  A priority 

system allocates satellite resources and connectivity to users.  [3]    

In order to help alleviate the demand on these satellite channels and provide users 

at all echelons in the battlespace with shared awareness, several enabling technologies are 

being investigated and implemented.  Some of these include high bandwidth free space 

optic (FSO) links among satellites and manned and unmanned airborne units, Internet 

Protocol (IP) based communication that can be dynamically routed, and mobile, radio 

frequency (RF) terminals that are reduced in size but provide higher data rate than 

currently available.   A system that can take advantage of these technologies is an RF link 

between a ship and an airborne node that routes the traffic to a satellite using an FSO 

link.  The airborne node in this proposed communications system functions as a 

communication relay and could be unmanned.  Instead of the current ship-satellite 

architecture, the ship-UAV-satellite architecture allows routing of traffic at an 

intermediary position and requires conversion between RF and FSO.  If the 

communication is meant for a unit that is also within view of the UAV, the UAV will 

relay the transmission without using the satellite link, creating a ship-UAV-ship 
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architecture.  This enables high data rate communication without placing additional 

burden on the satellite. 

A. THESIS FOCUS 

 The focus of this thesis will be to determine possible data rate improvements, user 

antenna size reductions, and parameter constraints of the composite RF and FSO system 

compared to that of a traditional RF satellite communications link.  Technology and 

systems currently in operational use or available commercially will be discussed and 

compared where available.    

For convenience, this thesis specifies a ship terminal in the ship-UAV-satellite 

construct.  However, the concepts are equally applicable to a ground vehicle, an aircraft, 

or man-portable radio system.  Analysis would need to be performed for the new 

parameters. 

B. THESIS ORGANIZATION  
Chapter II of this thesis defines network-centric operations and the 

implementation of network-centric warfare. 

Chapter III identifies factors within the ship-UAV-satellite communication system 

that will determine the data rate and performance of the link. 

Chapter IV is an analysis of the link using parameters from Chapter III.  A ship-

satellite link budget is compared with the ship-UAV-satellite link budget. 

Chapter V is a discussion of specific types of UAVs currently in operation or 

under development.  Based on the UAV limitations and the communication link 

requirements, suitable candidates were nominated. 

Chapter VI describes an experiment using IEEE 802.11b devices in concert with a 

FSO link. 

Chapter VII summarizes the findings in the thesis and provides recommendations 

for further work.        

 



3

II. NETWORK CENTRIC OPERATIONS 

The tenets of network-centric warfare (NCW) propose that a robustly networked 

force can increase mission effectiveness through collaboration that is facilitated by a 

shared situational awareness accomplished by information sharing.  Network-centric 

operations (NCO) describe the military application of the tenets and governing principles 

of NCW during peacetime, crisis and war.  NCO help to increase combat power by 

enhancing command and control through global situational awareness.  [2]     

Studies conducted on the use of NCO in real-world operations show that 

capabilities are improved and that some operations are not possible without a well 

networked force.   In order to attain this networked force, there must be an 

implementation of NCW across the combined spectrum of military services and coalition 

partners. This chapter briefly presents two mutually supportive communications 

architectures that allow for the implementation of NCW.   [2] 

A. TRANSFORMATIONAL COMMUNICATIONS ARCHITECTURE 
The Transformational Communications Architecture (TCA) offers a 

communications infrastructure that links interoperable and independent systems across 

the DoD, the Intelligence Community, and the National Aeronautics and Space 

Administration.  It is a dynamic transport mechanism that enables NCO and supports the 

transformational visions of U.S. military forces.  Enhancing command and control and 

mission effectiveness is accomplished in part by increasing decision maker mobility, and 

allowing for the sharing of quality information which reduces operational risk  [2]. The 

TCA provides increased access and data capacity to deployed and mobile users through 

the use of an internet of space, airborne, and ground networks.  By fully implementing 

Internet Protocol across the TCA, and through the support of multi-level security, the 

end-to-end connectivity to a variety of users enables global information sharing.  Ground, 

air, sea, and space assets will all be capable of generating, processing, receiving, or 

routing information  [4].  The TCA employs Advanced Extremely High Frequency 

satellites as well as satellite cross-links using laser communication to realize protected, 

survivable communication.  Figure  1 shows a depiction of the TCA.  [5]  



 
Figure 1.   Transformational Communications Architecture (From  [6]) 

 

In an operational context, the TCA allows time sensitive information to be relayed 

from sensors to shooters and decision makers.  This creates shared battlespace awareness.  

The TCA provides the war fighter with continuous accessibility to airborne and space 

assets, allowing the military to employ network-centric operations, and increase combat 

power. As shown in Figure  1, unmanned aircraft are envisioned to transmit information 

to the space segment using optical links.  The addition of an RF link from the UAV to the 

tactical user could reduce the demand for satellite access, alleviating possible congestion. 

 [4]  

B. FORCENET 

FORCEnet is the name for the U.S. Navy’s integrating concept and framework 

that allows the Navy to implement NCW in the information age.  Figure  2 depicts the 

Navy’s vision for FORCEnet. 

4



 
Figure 2.   FORCEnet, the U.S. Navy’s implementation of Network Centric Warfare 

(From  [7]) 

 

By connecting the Navy’s war fighters, sensors, networks, and platforms, to each other 

through FORCEnet and the TCA, there is an increase in combat effectiveness.  This is 

accomplished through an improved shared awareness of the battlespace and faster, more 

accurate decision making, which leads to better execution.  [8] 

 Since the FORCEnet-enabled Navy will be able to take advantage of the benefits 

of NCO through the TCA, the ship-UAV-satellite link has the potential to be an integral 

component of the maritime communication suite.  In addition to large deck ships, the 

high data rate associated with optical communication could be leveraged by small ships 

and Special Forces, provided the size of the RF user terminal can be minimized.    

C. CHAPTER SUMMARY 

There are many areas of research and technology involved with the TCA and 

FORCEnet.  These include, but are not limited to, laser communications, packet based 

multiple-access, antennas for communication on the move, and high capacity RF links 

 [5].  The Navy’s transformation and development of FORCEnet will have the capacity to 

5
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allow information sharing with joint, multiagency, and coalition partners  [8].  A ship-

UAV-satellite link could support both FORCEnet and the TCA. 

In the next chapter, the factors that comprise the ship-UAV-satellite 

communications link budget are presented.  Relevant parameters in the analysis of the 

link margin are taken from current operational and commercial systems when available.   

 

 
   



III. LINK BUDGET 

Analysis of a communications system traditionally involves development of a link 

budget.  Parameters of a communications link can be analyzed to predict performance 

and show the constraints of the transmitter, receiver, and the channel.   

Working in decibels, the amount of signal power received is given by 

( ) ( ) ( ) ( ) ( ) ( )dBW dBW dB dB dB dBr t t r sP P G G L L= + + − − a .  Where  is the power transmitted, 

 is the gain of the transmitter,  is the gain of the receiver,  is the free space loss, 

and  are additional losses encountered, such as atmospheric and pointing losses.  

Transmit power and the gain of the transmitter are often combined as a single term and 

denoted as the effective isotropic radiated power (EIRP).   This is written as 

.  [9]  

tP

tG rG sL

aL

( ) ( ) ( )dBW dBW dBt tEIRP P G= +

A. RECEIVER 

A receiver can be designed to operate in a given environment with acceptable bit 

error rate (BER) performance if a specified signal to noise ratio is met.  This received 

signal is provided by the transmitter and is diminished by the channel and non-ideal 

components within the receiver.  The receiver cannot be designed for a noiseless 

environment and be expected to operate in a real world situation, so a minimum signal to 

noise ratio for operation must be specified and then achieved.     

B. NOISE 
Noise is introduced at the receiver by several sources.  In RF communications, the 

dominant noise source is usually Johnson noise, also known as, thermal noise, while 

quantum noise becomes dominant in FSO  [10].   

The expression for thermal noise power in a bandwidth B  in the RF band is, 

, where  is Boltzmann’s constant,  N kTB= k 231038.1 −⋅ W s
K

⋅ , and T  is the noise 

temperature (in Kelvin).  Thermal noise is always present, in varying degrees, because it 

is dependent on the temperature viewed by the receiver in addition to noise temperatures 

of electronic devices in the receiver  [9].  Thermal noise has a relatively flat and frequency 

independent power density across the spectrum from DC up to about  Hz  [9].  Since 1210

7



even the furthest reaches of deep space are above absolute zero  [11], there will always be 

a thermal noise component in this range of frequencies.  The one-sided power spectral 

density for thermal noise is only frequency independent for , and is 

approximated from  

hfkT >>

hf
e

hffN
kT

hf +
−

=
1

)( , where  is Planck’s constant, 

, and  is the frequency of the electromagnetic radiation  [12].  In RF 

systems, the detection of signals in thermal noise and other electronic circuitry classically 

involves an additive Gaussian model  [13].  The random signal is represented as the sum 

of a Gaussian noise random variable and signal  [14]. 

h

346.6261 10  J s−⋅ ⋅ f

When dealing with near-optical frequencies, thermal noise can be neglected due 

to the high frequencies used  [10].  The noise terms for FSO systems are shot noise 

processes involving the quantum noise, and dark current noise  [13]. The random arrival 

of photons creates shot noise that is modeled by a Poisson process.  Quantum noise is 

expressed as   [15].  Dark current is the name for the process where electrons 

are emitted from the photodetector even when there is no incident light and add directly 

to the average detector output  [16].  In the optical band, noise is frequency dependent, 

placing a limit on the performance of the detector.  It cannot be represented purely as a 

sum of signal and additive noise since the signal itself has an associated variance  [16].  

Besides thermal noise, the analysis on the optical system will also neglect saturation, and 

photomultiplier effects, following Gagliardi and Karp  [17].   

hfBNQ =

C. GAIN 
Gain can be used at the transmitter as well as the receiver to boost the magnitude 

of the signal through the use of a directive antenna  [14].  This reduces the power the 

transmitter requires and/or increases the minimum amount of signal power received 

through the channel.  Antennas may be designed to collect more signal power than the 

isotropic antenna.  Doing so means balancing directivity with potential power 

accumulated.  A large amount of power can be collected in one direction, but at the cost 

of not being able to collect as much power from another.  Directivity can be 

advantageous especially in the case where potential interference may exist from other 

nearby sources.  Outside of the antenna’s main beam, other signals are attenuated.  By the 
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same token, if a signal is transmitted between misaligned directional antennas, pointing 

losses arise.  In ground to satellite RF links, the losses are typically only a few tenths of a 

decibel.   [18] 

Ideal antenna gain for a circular aperture of area A  is given by 2
4
λ
πAGideal = , for 

both RF and laser communications  [19].  By comparing this optimum case, it is 

straightforward to see that the antenna gain for FSO systems has the potential to be 

several orders of magnitude greater than RF gain by virtue of the 2
1
λ  factor.  An optical 

antenna with a five inch aperture operating at 1550 nm has an ideal gain of 108 dB, 

where a 100 ft microwave antenna operating at 8 GHz has a 68 dB gain.  The optical 

antenna, in this case, has a 40 dB advantage, ten-thousand times the gain, despite its 

smaller dimensions.   

1. Transmit Gain 
A parabolic antenna is often used to direct RF power in a given direction and 

increasing the size of the dish increases the gain for a given transmission frequency.  

Antenna gain for a parabolic antenna is given by , 2
4

t RF ideal
AG G πη η

λ
= ⋅ = , where η  is 

the aperture efficiency factor typically between 0.5 and 0.6, λ  is the wavelength of the 

signal, and A  is the area of the antenna  [9]. 

FSO antennas can be conventional telescopes that often have obstructions in the 

center of the lens.  Figure  3 shows various telescope designs.   
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Figure 3.   Telescope designs (After  [20]). 

 

The transmit gain has an efficiency factor, that accounts for losses caused by obscurations 

such as blockage and other losses. If we restrict analysis to the far field, the expression 

for the gain of a circular transmitter antenna becomes 

[ ⎥⎦
⎤

⎢⎣
⎡ −⋅= −− 2

22,

22224 αγα

αλ
π eeAG FSOt ]   [20].  α  is the ratio of antenna radius to beam width 

at the 2
1

e  intensity point, γ  is the obscuration ratio, a
b , where b is the radius of the 

center lens obstruction and  is the radius of the outer aperture.  The optimum 

transmitter efficiency with no obscurations, only on-axis gain, and far field transmission 

is 0.8145  [19].   

a

2. Receiver Gain 

The antenna gain for the receiver in RF systems is identical to the transmitter 

gain, 2,
4
λ
πη AG RFr =   [9].  However, the gain for the circular receive antenna in laser 

communications is different than its transmit antenna counterpart.  The receiver gain is 
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expressed as ( 2
2, 14 γ

λ
)π

−⋅=
AG FSOr .  It is clear that if obscurations are minimized, the 

antenna gain approaches the ideal.   [21] 

A key parameter in characterizing the receiving system performance is rG T , a 

combination of the receiver antenna gain and the system noise temperature.  The signal to 

noise ratio of a satellite link can be used to predict how well the link will operate.  Using 

the rG T  term, the link equation for signal to noise ratio becomes 

( ) ( ) ( ) ( ) ( ) ( )dBW dB K dB dB dBJ K dBHz
dB

EIRPr
r s a

n

P G T L L k B
P

⎛ ⎞
= + − − − −⎜ ⎟

⎝ ⎠
.   [18] 

 

D. LOSS 
Losses in a communications system come from several sources.  Some significant 

losses are caused by the distance between the transmitter and receiver, molecule and 

aerosol attenuation, atmospheric turbulence, and pointing losses.  [16] 

1. Free Space Loss 

Free space losses, 
24

s
dL π

λ
⎛= ⎜
⎝ ⎠

⎞
⎟ , occur as the transmitted radiation is spread out 

over a spatial volume and is proportional to the square of the distance the signal travels, 

  [9].  The free space loss is often the largest loss component  [14].   d

2. Attenuation 

Attenuation in the channel due to absorption and scattering is given by the 

transmission loss factor,  , where d
t eL µ−= µ  is the sum of the absorption and scattering 

attenuation parameters  [16].  Whether a signal will be scattered or absorbed by molecules 

and aerosols in the channel is dependent on the signal’s wavelength as well as the size 

and attenuation coefficient of the particle  [20].  

a. Scattering  
Scattering describes the behavior of light as it reflects and bounces 

through the atmosphere.  The amount of received energy is attenuated as it propagates. 

Rayleigh scattering occurs with particles or molecules smaller than the wavelength of the 

transmitted energy.  This type of scattering affects shorter wavelengths like those in the 
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visible spectrum much more than the larger RF and infrared wavelengths.  Mie scattering 

describes interactions with particles about the same size of the transmitted wavelength. 

 [22]       

b. Absorption 

Absorption by molecules and particles in the atmosphere is dependent on 

the frequency of the transmitted radiation and the amount of absorbing substance in the 

channel.  The atmosphere contains oxygen, water vapor, and carbon dioxide, but the 

frequency of the transmission determines to what degree each substance will absorb the 

energy  [22].  Because of the abundance of oxygen and water vapor in the lower 

atmosphere, high frequency signal attenuation due to scattering and absorption are much 

larger near the Earth’s surface than at high altitudes.  [20] 

3.  Turbulence 
As light travels across a path, it may be bent or refracted when it crosses into 

different densities of atmosphere.  Especially across large distances in the atmosphere, 

pockets of different temperature and indexes of refraction exist.  This can cause beam 

wander, scintillation, and beam spreading.  A turbulent boundary layer can be caused by 

air flowing over an aircraft’s exterior, distorting the phase.  This effect is measured by the 

Strehl ratio, which can be minimized by maintaining high altitude and slow speed as 

show in Figure  4.  [20]  

 
Figure 4.   Wavefront quality measured by Strehl Ratio versus altitude for several 

speeds (From  [20]) 
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a. Beam Wander 
Beam wander describes the effect of a relatively narrow beam passing 

through a large pocket and slightly altering its course  [16].  These fluctuations are 

typically slow and can be minimized by using a tracking system  [20]. 

b. Scintillation 
FSO communication systems are adversely influenced by scintillation’s 

rapidly changing random fluctuations, especially near the Earth’s surface.  Small 

temperature variations cause constructive and destructive interference.  The difference in 

index of refraction from points in the channel can be modeled in a time varying 

probabilistic manner. Examples of environments where scintillation is likely to be easily 

observed are on a hot road, the desert sand, or the deck of a ship.  [20] 

c. Beam Spread 

A turbulent channel can cause the divergence of a beam to increase larger 

than predicted  [23].  Beam divergence occurs in free space and is given as 2
div a

λθ
π

=
⋅

, 

where divθ  is the angle in radians that a plane wave spreads from leaving an aperture of 

radius   [20].  Beam spread has a weak dependence on wavelength, and with laser 

systems, adaptive optics can be used to mitigate this effect  [24]. 

a

4. Pointing Loss 
Pointing losses occur when the transmit and receive antennas are misaligned so 

that the full antenna gain is not realized.  In some cases, the transmitter or receiver 

antenna directivity may be so high that failing to align them carefully will prevent 

successful transmission.  In the case of transmitters and receivers with highly directional 

antennas, a mechanism for tracking must be employed to ensure that pointing losses are 

minimized.  The narrow beam width of optical systems provide for excellent 

communications security from a low probability of intercept view, but the tracking 

requirements must be held to a much higher specification when compared to microwave 

systems.  Pointing losses in RF ground to satellite systems may be quite small and beam 

divergence may be large enough that a fine tracking system is not required.  However, 

even in great distance inter-satellite links, laser communication beam divergence is so  
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small that pointing errors are significant to bit error rate and overall link performance 

 [20].  Where pointing losses do exist, this thesis will model them as an additional loss, 

increasing the  term.   [18]  aL

E. CHAPTER SUMMARY 
 The design of a communications link requires knowledge of the constraints of the 

system.  Losses and gain are partially dependent on the frequency band of the system and 

figure prominently in the final signal to noise ratio achieved at the receiver.  By careful 

analysis of the factors that benefit and degrade the signal, a prediction can be made as to 

whether the system will meet the required data rate and performance specifications.  If 

the expected criteria are not met, changes to the system under design must be made.  

These changes can include processing modifications such as the use of forward error 

correction coding, and hardware substitutions such as replacing antennas and oscillators. 

 Next, link budget analysis and comparison of an RF ship-satellite link to a 

composite link using RF from ship to UAV and FSO from UAV to satellite will be made.  

When available, parameters of systems currently in use will be applied.  Through this 

analysis, the possibility and potential benefits of using the ship-UAV-satellite 

architecture will be discussed. Equation Section 4 
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IV. ANALYSIS 

The link analysis for a ship-satellite communications system can be compared to 

that of a ship-UAV-satellite system.  In the latter case, the ship-UAV link will be RF, and 

the UAV-satellite link will be optical.  Both cases will be analyzed using estimated 

parameters for systems that are currently in use or have the potential to be fielded with 

technology that is available today.   

In both cases, the satellite will be in a geosynchronous orbit with an altitude of 

35,786 km.  This is the distance from the satellite to a position on the earth directly below 

the satellite.  The slant range from a transmitter on the earth’s surface to the satellite is 

approximated by the range of a geostationary orbit as 

2 2 12 sin sin cos(E
E GSO E GSO

GSO

Rd R a R a b b
a

−⎡ ⎤⎛ ⎞
= + − ⋅ ⋅ + ⋅⎢ )⎜ ⎟

⎝ ⎠⎣ ⎦
E⎥ , where R  is the radius of the 

earth,  is the radius of the circular orbit from the center of the earth, and  is the 

elevation angle of the earth station.  For purposes of illustration through this chapter, an 

elevation angle of and a slant range of   = 40,000 km are assumed.  [25]  

GSOa b

20 degreesb = d

The RF link between the ship and the satellite as well as the RF link between the 

ship and the UAV will use an SHF system that employs the WSC-6 (V)9 antenna group.  

The ship to satellite will use the WSC-6 (V)9 radio group and use DSCS III parameters.  

This system is currently employed on small combatant and support ships in the U.S. 

Navy and provides up to 2.048 Mbits/s data rate per channel  [26]. 

The optical link will be based on a system that can support a very high data rate.  

From the constraints dictated by the data rate and BER performance, a candidate system 

will be prescribed.  The UAV will be at an altitude of 65,000 ft, or 19.8 km.  Again, it is 

expected that the user may be in a location other than directly underneath the UAV, so 

the furthest range will be 58 km, corresponding to approximately a 20 degree angle up 

from the horizon. 
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A. DATA RATE 
In order to rationalize the added complexity of using a FSO-mounted UAV for 

communications, the data rate realized should be much greater than the rate currently 

obtained only using RF.  If the resulting data rate from the ship-UAV-satellite link is 

several orders of magnitude more than currently obtained, it may receive more 

consideration than a modest increase.  Therefore, we will attempt a data rate of 2 Gbps  

per channel between the ship and satellite, using the UAV as a relay.   

Although the ship’s antenna group can remain the same, it is expected that the RF 

radio group on the ship and UAV will be different from the current satellite 

configuration.  The antenna group on the UAV may also need to be altered depending on 

the constraints of the airframe.  The goal in configuring the new ship-UAV RF system 

will be to increase the data rate and the link margin from the ship-satellite system.  With 

the additional link margin, it will be shown that the system can be changed to increase the 

data rate from the original 2Mbps, improve the BER performance, reduce the size of the 

ship’s antenna, reduce the required power, or any combination of these.   

B. FREQUENCY 
The WSC-6 (V)9 operates in the X-band when communicating with the DSCS.  

The receive frequency band and wavelengths are 7.25-7.75 GHz and 3.87-4.14 cm, while 

the transmit band is 7.9-8.4 GHz and 3.57-3.79 cm  [26].   

The FSO system will operate in the infrared portion of the spectrum at the eye-

safe wavelength of 1550nm.  This corresponds to a frequency of 193.5 THz.   

C. TRANSMITTER AND RECEIVER 

The antenna for the WSC-6 (V)9 is 1.52 m in diameter, and the EIRP is given as 

95.3 dBm, and while receiving, 16.4  dB KG T =   [27].  The antenna gain can be 

calculated assuming an illumination efficiency factor of 0.6 to be 

( )
( )

2

, 22 2

4 1.81 m4 0.6 8551 39 dB
4 10  m

t RF
AG

ππη
λ −

= = ⋅ = =
⋅

.  The DSCS III satellite has an EIRP 

of 70 dBm  [28] with a G T  of 1 dB K−   [29].  This corresponds to the main beam 

antenna aboard the DSCS III satellite that has a diameter of 45 in.  [29].  The transmit 
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gain for this antenna is 
( )

( )

2

, 22

4 1.02 m
0.6 5682.8 37.5 dB

3.68 10  m
t RFG

π
−

= ⋅ = =
⋅

.  The RF antenna 

on the UAV will be selected in order to provide the necessary proposed data rate at the 

BER performance specified while meeting the size and weight requirements necessary to 

be mounted to the UAV selected.  The UAV should be capable of serving all ships in line 

of sight, and would require a multi-beam RF antenna, possibly using a phased array.  In 

order to simplify the analysis for this thesis, a conventional parabolic RF antenna serving 

one ship at a time is used. 

The physical characteristics of the  transmitters used in the FSO segment will be 

modeled from the Terabeam Elliptica 7421i.  The Elliptica is a commercially available 

FSO transceiver for use in extending or connecting local or wide area computer networks 

 [30].  The aperture of the Elliptica is about 10 cm in diameter, as shown in Figure  5. 

 

Figure 5.   Terabeam Elliptica Aperture. 

When the link is active, the alignment and monitor software tool in Figure  6 shows that 

the transmitted power is about 15 mW.   

17



 
Figure 6.   Terabeam Elliptica Alignment and Monitoring Tool. 

 

Assuming on-axis gain and minimizing truncation effects, the FSO transmitter has 

( )
( )

2 2 2 2

, 2 2

22 22 2

22 9

11

4 2EIRP

4 5 10  m4 0.81 15 mW 0.81
1550 10  m

4.99 10  mW 117 dBm

t t FSO t

t

AP G P e e

aP

α γ απ
λ α

ππ
λ

− −

−

−

⎡ ⎤⎡ ⎤= ⋅ = ⋅ ⋅ −⎢ ⎥⎣ ⎦⎣ ⎦

⋅ ⋅
= ⋅ = ⋅ ⋅

⋅

= ⋅ =

   (4.1) 

 
 

D. LOSSES 
From the transmitter to the receiver, the signal is degraded from many sources.  

Some losses are inevitable but the degree of attenuation may be dependent on the 

wavelength of the transmitted signal.   

1. Free Space Loss 
Although both link designs have the same overall distance, spanning from the 

ship to the satellite, the free space losses are different because of the wavelength term.  

The free space loss on the uplink and downlink between the ship and satellite are  
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22 3

, 2

20

4 4 40000 10  m
4 10  m

1.58 10 202 dB

s ship sat
dL π π

λ− −

⎛ ⎞⋅ ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝
= ⋅ =

⎠    (4.2) 

 
22 3

, 2

20

4 4 40000 10  m
3.68 10  m

1.86 10 202.7 dB

s sat ship
dL π π

λ− −

⎛ ⎞⋅ ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⋅⎝ ⎠ ⎝
= ⋅ =

⎟
⎠      (4.3) 

 

The loss on the uplink and downlink between the ship and UAV in the RF band as well as 

loss between the UAV and satellite at FSO frequencies are 
22 3

, 2

14

4 4 58 10  m
4 10  m

3.31 10 145.2 dB

s ship UAV
dL π π

λ− −

⎛ ⎞⋅ ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⋅⎝ ⎠ ⎝
= ⋅ =

⎟
⎠    (4.4) 

 
22 3

, 2

14

4 4 58 10  m
3.68 10 m

3.89 10 145.9 dB

s UAV ship
dL π π

λ− −

⎛ ⎞⋅ ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⋅⎝ ⎠ ⎝
= ⋅ =

⎟
⎠    (4.5) 

 
2

, ,

23
29

9

4= =

4 (40000 19.8) 10  m= = 1.05 10
1550 10  m

= 290.2 dB

s UAV sat s sat UAV
dL L π

λ

π

− −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⋅ − ⋅
⋅⎜ ⎟⋅⎝ ⎠

    (4.6) 

 
2. Atmospheric Loss  

The absorption and scattering losses can be approximated through the use of 

PLEXUS.  The Air Force Research Laboratory, Space Vehicles Directorate has 

developed PLEXUS (Phillips Laboratory EXpert-assisted User Software), a software 

program that allows the user to predict the transmittance of the electromagnetic spectrum 

through the atmosphere.  Spectral transmittance, the fraction of electromagnetic radiation 

transmitted through a medium is given by Beer’s Law as ( )
( )

out

in

S f
S f

τ = , where  and ( )inS f
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( )outS f  are the input and output power spectral densities, respectively  [31].  PLEXUS 

can model several environmental situations including the link geometry, time of day, time 

of year, visibility, cloud types, and aerosol conditions in order to forecast and plot 

probable interactions and transmittance.  [32]  

To show how different conditions can alter the atmospheric loss, Figures  7 

through  12 show how PLEXUS models attenuation.  The figures illustrate clear 

conditions with good visibility (5 km) as well as foggy with poor visibility (0.5 km) 

either in a directly overhead geometry or at a 20 degree angle up from the horizon.  

Figures  7 through  10 illustrate the spectral transmittance for RF links while Figures  11 

through  16 illustrate the spectral transmittance for optical links.   

Foggy, 0.5 km visibility Clear, 5 km visibility
 

 
Figure 7.   Ground to satellite (0.005 km to 35786 km) 7-9 GHz, directly overhead 

orientation, maritime aerosol environment. 
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Foggy, 0.5 km visibility Clear, 5 km visibility  
Figure 8.   Ground to satellite (0.005 km to 35786 km) 7-9 GHz, 20 degree angle 

from horizon, maritime aerosol environment 
 

Clear, 5 km visibility     Foggy, 0.5 km visibility     
 

 
Figure 9.   Ground to UAV (0.005 km to 19.8 km) 7-9 GHz, directly overhead 

orientation, maritime aerosol environment. 
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Foggy, 0.5 km visibility Clear, 5 km visibility  
Figure 10.   Ground to UAV (0.005 km to 19.8 km) 7-9 GHz, 20 degree angle from 

horizon, maritime aerosol environment. 
 

 

By examining the figures, it is clear that atmospheric attenuation in the 7-9 GHz 

frequency band occurs mostly in the altitudes below 19.8 km, since the higher altitude of 

35786 km has hardly any effect compared to the 19.8 km altitude.  Attenuation is more 

pronounced when the angle of transmission is not directly overhead.  When transmitting 

straight up, the signal effectively passes through the least amount of atmosphere.  

Regardless, the losses due to absorption for RF are very low.  In fact, the atmospheric 

loss for the RF link in the worst case scenario of a low transmission angle through fog for 

either ground to satellite or ground to UAV is approximately, , 1 0.95 0.2atm RFL dB≈ = . 
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 The following figures show the atmospheric attenuation for the FSO link. 

 

 Clear, 5 km visibility  Foggy, 0.5 km visibility Clear, 5 km visibility 
 

Figure 11.   UAV to satellite (19.8 km to 35786 km) 1500-1600 nm,  directly overhead 
orientation, maritime aerosol environment. 

 
 
 

Foggy, 0.5 km visibility Clear, 5 km visibility  
 

Figure 12.   UAV to satellite (19.8 km to 35786 km) 1500-1600 nm, 20 degree angle 
from horizon, maritime aerosol environment. 

 

In Figures  11 and  12, the UAV is positioned above the fog layer, so there is no difference 

in transmittance due to fog near the earth’s surface.  The only absorption and scattering 

indicated in these figures occurs at altitudes higher than 19.8 km.  At this altitude, at the 

1550 nm wavelength, there are virtually no atmospheric losses for the optical link.  At 

1572 nm, the atmospheric attenuation is significantly increased when the UAV and 

satellite geometry is changed from directly overhead to a 20 degree angle.  
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To illustrate the effect that the lower atmosphere has on laser communications, 

the altitude of the UAV is reduced to a level as if it were mounted on a ship’s mast in 

clear and foggy conditions.  Clear conditions with different orientations are shown in 

Figures  13 and  14.  Figures  15 and  16 show these orientations with fog. 

 

 

Clear, 5 km visibility  
 

Figure 13.   UAV to satellite (0.005 km to 35786 km) 1500-1600 nm, directly 
overhead orientation, maritime aerosol environment. 

 

Clear, 5 km visibility
 

 
Figure 14.   UAV to satellite (0.005 km to 35786 km) 1500-1600 nm, 20 degree angle 

from horizon, maritime aerosol environment. 
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Foggy, 0.5 km visibility
 

Figure 15.   UAV to satellite (0.005 km to 35786 km) 1500-1600 nm, directly 
overhead orientation, maritime aerosol environment. 

 

Foggy, 0.5 km visibility  
 

Figure 16.   UAV to satellite (0.005 km to 35786 km) 1500-1600 nm, 20 degree angle 
from horizon, maritime aerosol environment. 

 

Figure  13 shows a large attenuation compared to any of the RF transmissions or the FSO 

transmission at 19.8 km.  With a 20 degree angle as shown in Figure  14, the loss at 1550 

nm in clear conditions is almost 10 dB.  This is worse than the RF case, but the loss is not 

so extreme that it could not be overcome by increasing the transmission power or raising 

the antenna gain through increasing the size of the antenna aperture.  However, to 

compensate for the loss due to fog shown in Figure  16, the increase in antenna size or 

transmission power would be unacceptably large.  This motivates the research of using 

RF at the lower altitudes between the ship and the UAV, and FSO between the UAV and 

the satellite. 
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3. Pointing Loss 

The pointing loss for the ground to satellite RF link is included in the TG  term 

of -1 dB K  [29].  If the UAV selected is large enough, and can be reasonably expected to 

accommodate the 45 in. DSCS III antenna, the same TG  term may be applied for the 

ship to UAV RF link. 

For the FSO link, the pointing loss will be approximated following Lambert and 

Casey to be 2.4 dB.  This error takes into consideration tracking errors as well as 

alignment and point-ahead accuracy shortcomings inherent in a mobile architecture such 

as this.  [20]  

E. MODULATION 
The WSC-6 (V)9 can use phase shift keying with eight symbols (8-PSK) to 

modulate the data  [27].  The signal constellation for 8-PSK is shown in Figure  17, where 

each point represents a symbol representing three bits of information.  Ideally, instead of 

bits being sent one at a time, bandwidth is conserved and three bits are transmitted per 

transmission.  If rectangular pulses are assumed, then using the null-to-null bandwidth, 

, the bandwidth efficiency for 8-PSK modulation is W 1.5
2 2 3s

R R R
RW R

= = =
⋅

, where R  

is the bit rate and sR  is the symbol rate.  [9]   

000

100

001

011

010

110

111

101  
Figure 17.   8-PSK signal constellation (After  [9]). 
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 For the FSO link, there are several options for the type of signal detection and 

modulation used.   One of the simplest and most common techniques used is direct 

detection with binary baseband signaling.  Direct detection involves converting optical 

energy to electrical energy by the detector and does not require any mixing of the 

incident signal.  Electrons are released from a photodetector when it is illuminated by 

incident radiation.  [16]  

Binary ones and zeros can be sent across the link by On-off keying (OOK).  The 

bandwidth efficiency for OOK is 1
2

R
W

= , where W  is the null to null bandwidth of the 

OOK signal and R is the data rate in bits per second.  [33].  This modulation requires 4 

GHz of bandwidth at a 2 Gbps data rate.  There are other modulation schemes available 

at better performance and spectral efficiency, but at a higher complexity cost.    

F. NOISE 
The receive noise temperature for the DSCS III satellite is 832.5 K  [29], while the 

receive noise temperature for the WSC-6 (V)9 is 169.8 K  [27].  Receiver G T  is given 

for the DSCS III as -1 dB K   [29], while the WSC-(V)9 has a G T 16.4 KdB   [27].  

Since the WSC-6 (V)9 can use an 8-PSK modem, and the bandwidth is one two-thirds of 

the bit rate, B  will be 1.365 MHz at 2.048 Mbps, or 1.333 GHz at 2 Gbps.  For purposes 

of this thesis, the noise temperature for the ship to UAV link will be the same as for the 

ship to DSCS III link.  Noise power at the receiver for the uplink and downlink are 

 

( ) ( ) ( )23 6

14

1.38 10 J K 832.5 K 1.365 10  Hz

1.57 10  W 138 dBW
ship sat uN kT B −

−

−

= = ⋅ ⋅

= ⋅ = −
 (4.7) 

 

( ) ( )( )23 6

15

1.38 10 J K 169.8 K 1.365 10  Hz

3.2 10  W 145 dBW
sat ship dN kT B −

−

−

= = ⋅ ⋅

= ⋅ = −
 (4.8) 

 

( ) ( )( )23 9
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1.38 10 J K 832.5 K 1.333 10  Hz
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ship UAV dN kT B −

−

−
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 (4.9) 
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( ) ( )( )23 9
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1.38 10 J K 169.8 K 1.333 10  Hz

3.12 10  W 115 dBW
UAV ship uN kT B −

−

−

= = ⋅ ⋅

= ⋅ = −
 (4.10) 

   

The quantum noise in the optical system is given by  

 

( ) ( ) ( )34 12 9

10

6.63 10 J s 193 10 Hz 4 10 Hz

5.12 10  W -92.9 dBW
QN hfB −

−

= = ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ =

⋅
  (4.11) 

 

The dark current noise is dependent on the average dark current of the individual 

photodetector.  The Elliptica FSO system does not disclose the dark current for its 

infrared InGaAs avalanche photodiode detector.  For this, we follow Einarsson and use 

an average dark current, , of   [13].  When a zero is transmitted, ideally, there 

are no photons transmitted.  The average number of electrons counted during the bit 

interval 

di
91.5 10 A−⋅

[ ]0, t  when a zero is transmitted will be the average noise count, , where 0m

0 0

t
dim
q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ dt .  When a one is transmitted, the average number of electrons counted in 

the bit interval will be , where 1m 1 0

t q r dP im dt
hf q

η ⋅⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫ q, and η  is the quantum 

efficiency defined to be the probability of an electron being released for an incident 

photon  [16].  Again following Einarsson, qη will be 0.9.    At 2 Gbps,  is , and  t 105 10  s−⋅

( ) ( )

-10 9510 s

0 190 0

9 -10

1.5 10  A
1.6 10  C

 electrons9.38 10 5 10 s 4.69 electronss
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q

−⋅
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= ⋅ ⋅ ⋅ =
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  (4.12) 
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For  and most likely for , we do not compute an integer for the number of 

electrons.  Instead of rounding them up or down, we will use these average values to 

determine the optimum threshold for signal detection when we calculate the probability 

of bit error.  At that time an integer value for the threshold will be assigned.  [13]  

0m 1m

G. BER PERFORMANCE 
The performance of both systems will be held to a probability of bit error less 

than .  In order to maintain the performance threshold for the 8-PSK modulation 

scheme in the RF systems, a minimum received signal to noise ratio must be achieved.   

In the FSO system, a minimum signal count for a given noise count over the bit interval 

must be met. 

6101 −⋅

The BER for 8-PSK can be written in terms of energy per bit,  as bE

2

0
, ,8

2 0

2 log 82 sin
8 2 0.94

log 8 3

b

b
b RF PSK

EQ
N EP

N

π⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠≈ = ⎜

⎝ ⎠
Q ⎟

b

   [9]   (4.14) 

The received power is related to energy per bit by r bP E R= ⋅ .  The BER versus 

0NEb for 8-PSK is shown in Figure  18.   
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Figure 18.   8-PSK Bit Error Rate vs 0NEb  in an AWGN channel 

 

From Figure  18, it can be seen that in order to maintain a BER of less than , 6101 −⋅

0NEb  must be greater than 14 dB.  From this graph, and the relationship of received 

power to energy per bit and bit rate, we see at a given received power, the performance 

level can be maintained by adjusting the bit rate.  For  held constant, and a specified 

BER, if 

rP

0NEb is not large enough, the bit rate must be decreased, and likewise for a 

very large 0NEb , the bit rate can be increased.  [14]  

 The minimum value of 0NEb is for the overall satellite link, including the uplink 

and the downlink.  Typically in a ground to satellite link, the downlink limits the entire 

system due to the limited EIRP available from the satellite.  The overall 0NEb  is 

calculated from the overall signal to noise ratio, S
N

, more conveniently expressed as the 

sum of uplink and downlink noise to signal ratios, 
r rU D

N N N
S P P

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  Then, we relate 

the overall signal to noise ratio to 0NEb  as 
0

b

b

E S W
N N R

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  [14]  
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 The probability of bit error for an optical system using OOK is given as  

int
0 1
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0
, ,
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2 ! 2 !

n n
m m

b FSO OOK
n n

m mP e
n n

κ

κ

∞
− −

= + =

= +∑ ∑ 1 e   [13]     (4.15) 

The threshold for detection is given by 
( ) ( )

1 0

1 0ln ln
m m

m m
κ −
=

−
  [13].  Since we are dealing 

with discrete electrons, the threshold used is the integer portion, intκ .  There is also a 

Gaussian approximation for this error probability expressed as 

( ), , 1 0b FSO OOKP Q m≈ − m   [13].  The BER for optical OOK is shown in Figure  19. 

 
Figure 19.   Optical OOK bit error rate vs Signal Count in an AWGN channel 
 

In order to maintain the necessary BER performance, the photodetector of the receiver 

must generate at least 42 electrons within the bit period when illuminated with signal 

power.  From earlier, we calculated the average number of signal electrons to be 
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( )9
1

electrons3.51 10  4.69 electronsWrm P= ⋅ ⋅ + .  Therefore the minimum received 

signal power for a one to be correctly detected is  or -69 dBm. 0.11 nW

H. LINK EQUATION 
With all the necessary terms identified for the analysis, the link budget can be 

calculated.  The results for the ship to satellite link are shown in Table  1, while the ship to 

UAV link is shown in Table  2. 

 

 Link Parameter Value Units Comments 
Uplink     

Ship  EIRP 65.3 dBW  
Path Loss (7.5 GHz) 202 dB  

Atmospheric Loss 0.2 dB  

Satellite G T  -1 dB/K Includes pointing loss 
Boltzmann's Constant -228.6 dBW/K-Hz  
Bandwidth 61.3 dB-Hz 1.365 MHz 

    
Uplink Signal to Noise Ratio 29.4 dB  

   
   

   
   

  S
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to
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Downlink     

Satellite  EIRP 44 dBW  
Path Loss (8.15 GHz) 203 dB  
Atmospheric Loss 0.2 dB  
Ship G T  16.4 dB/K  
Boltzmann's Constant -228.6 dBW/K-Hz  
Bandwidth 61.3 dB-Hz 1.365 MHz 

    
Downlink Signal to Noise 
Ratio 24.5 dB  

   
   

   
   

   
 S

at
el

lit
e 

to
 S

hi
p 

    
Total Signal to Noise (Total) 23.3 dB 

Bandwidth 61.3 dB-Hz 
 

Bit Rate 63 dB-bps 2Mbps 

0E Nb  21.58 dB 

0E Nb for  61 10bP −≤ ⋅ 14 dB 

 

Margin 7.58 dB 

 

Table 1. DSCS III Ship to Satellite Link Budget for 2 Mbps Data Rate (After  [29]) 
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 Link Parameter Value Units Comments 
Uplink     

Ship  EIRP 65.3 dBW  
Path Loss (7.5 GHz) 145.2 dB  
Atmospheric Loss 0.2 dB  
UAV RF G T  -1 dB/K Includes pointing loss 
Boltzmann's Constant -228.6 dBW/K-Hz  
Bandwidth 91.25 dB-Hz 1.333 GHz 

   
Uplink Signal to Noise Ratio 56.25 dB 

   

   
   

   
   

   
   

  S
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p 
to
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V
 

    
Downlink    

UAV  EIRP 44 dBW 
Path Loss (8.15 GHz) 146 dB 
Atmospheric Loss 0.2 dB 
Ship G T  16.4 dB/K 
Boltzmann's Constant -228.6 dBW/K-Hz  
Bandwidth 91.25 dB-Hz 1.333 GHz 
   
Downlink Signal to Noise 
Ratio 51.55 dB 

   
   

   
   

   
   

   
   

U
A

V
 to
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Total Signal to Noise (Total) 50.3 dB 

 Bandwidth 91.25 dB-Hz  
 Bit Rate 93 dB-bps 2 Gbps 

 0E Nb  48.53 dB 

 0E Nb for  61 10bP −≤ ⋅ 14 dB 
 Margin 34.5 dB  

Table 2. Ship to UAV RF Link Budget for 2 Gbps Data Rate 
 

As with the satellite link, a total signal to noise ratio is calculated in case the UAV 

acts like the satellite and relays the signal similar to the DSCS III scenario.  It is possible 

that two ships are beyond line of sight from one another, but could communicate via the 

UAV.  This would relieve the need for a satellite. 

The link margin for the ship to UAV link with a 2 Gbps data rate is much more 

than the ship to satellite link with 2 Mbps.  If the calculated margin for the DSCS III link 

is kept as the minimum margin to account for fading caused by heavy rain and smaller 

elevation angles, changes can be made to the system while still achieving the required 
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performance at the designated bit rate.  The ship and the UAV’s EIRP can be reduced so 

that the overall signal to noise ratio remains above 23.3 dB.  Reducing EIRP is 

accomplished by decreasing the size of the antenna to yield a smaller gain, or by using 

less power to transmit.  If the UAV remains the same, the EIRP of the ship can be 

calculated from  

( ) ( ) ( ) ( ) ( )
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      (4.16)   

      

The minimum EIRP of the ship is 32.35 dBW or 1718 W.  With a transmitter power of    

5 W, the minimum antenna radius, a  becomes 

( ) ( )
( )

, 2

2 2
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This parabolic antenna is now a foot in diameter, requires only 5 W of power, and could 

be connected to a radio to attain a 2 Gbps data rate. 

 The link budget for the FSO link modeled from the Elliptica 7421i is shown in 

Table  3. 
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 Link Parameter Value Units 
Uplink    

UAV  EIRP 117 dBm 
Path Loss (1550 nm) 290.2 dB 
Pointing Loss 2.4 dB 
Atmospheric Loss 0 dB 
Satellite Gain 105.2 dB 
Received Power -70.4 dBm 
Required Received Power for 61 10bP −≤ ⋅  -69 dBm 

   
   

U
A

V
 to
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at

el
lit
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Margin -1.4 dB 
    

Downlink    
Satellite  EIRP 117 dBm 
Path Loss (1550 nm) 290.2 dB 
Pointing Loss 2.4 dB 
Atmospheric Loss 0 dB 
UAV Gain 105.2 dB 

  S
at

el
lit

e 
to

 U
A

V
 

Received Power -70.4 dBm 

 Required Received Power for 61 10bP −≤ ⋅  -69 dBm 
 Margin -1.4 dB 

Table 3. Elliptica 7421i UAV to Satellite  FSO Link Budget for 2 Gbps Data Rate 
 

The link margin for this system is less than zero, which means the received power is 

insufficient for a 2 Gbps data rate with a BER of 61 10−⋅ .  According to Sklar, systems 

employing new technologies often require additional margin compared to systems that 

have been built and tested many times over.  Some of the INTELSAT systems have a 4 to 

5 dB margin, so a margin of 7 dB will be assigned to the FSO UAV to satellite link.  [14]  

 In order to attain a 7 dB margin on each of the uplink and downlink, the received 

power on both the uplink and downlink must be increased by roughly 8.5 dB to up -60.5 

dBm.  The path loss can be decreased by flying the UAV at a higher altitude, decreasing 

the range between the UAV and the satellite.  To compensate for 8.5 dB, the path loss 

would be need to be reduced to 281.7 dB, or 28  W1.48 10 W⋅ .  The new altitude, , is 

calculated to be  

d

2
28

9
28

41.49 10

1550 10  m1.49 10 = 15001 km
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   (4.18) 
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 This is an extremely high altitude and greatly increases the path loss between the ship 

and the UAV.  The pointing loss is relatively small, and even if it were eliminated 

altogether, it would not be enough to realize a 7 dB margin.  The received power can be 

increased by using a larger EIRP.  A different system than the Elliptica can be used, and 

as seen earlier, the antenna size can be changed to adjust the EIRP.  In the RF case, the 

EIRP was decreased by reducing the antenna size, but here, we can increase the aperture 

to boost the EIRP, thereby satisfying our link margin constraint.  The EIRP for the 

satellite and the UAV must each be increased by 8.5 dB to 125.5 dBm, or . 123.55 10  mW⋅

( )
( )

2 2

, 2

2 2
12

29
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1550 10  m
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⋅
  (4.19) 

This aperture is about 10.5 in. in diameter, and would be much smaller than the RF 

antenna used on the UAV.   

I. CHAPTER SUMMARY 
Through analysis of the link budget, we were able to determine that an RF ship to 

UAV and FSO UAV to satellite link could be expected to perform with an uplink and 

downlink BER of , or 61 10−⋅ 62 10−⋅ overall,  at 2 Gbps.  There was sufficient margin that 

the ship’s antenna could be reduced to about one foot in diameter and still maintain the 

data rate and BER performance requirements. 

The commercial FSO system available to the author, Terabeam’s Elliptica 7421i 

is not suitable for the high data rate UAV to satellite link.  The necessary optical link 

specified here has a transmit power of 15 mW, a wavelength of 1550 nm, a dark current 

of 1.5 nA, and a 10.5 in. obscuration free lens.  

Next we will examine possible UAV candidates to mount the necessary 

communication systems.  Factors to examine will include time on station, operating 

altitude, and cargo capacity, both in physical area and power availability.  Operational 

concepts such as launching and recovering the UAV will also be addressed. 
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V. UAV SELECTION 

In the ship-UAV-satellite link, the UAV is the crucial relay, providing the 

mechanism to route the ship’s signal to the satellite and vice versa.  Once the signal is 

received and demodulated in the UAV, it is assumed that the routing of information is 

possible through the use of high speed IP routers.  The platform that will accommodate 

the communication and networking equipment is a critical design choice.  Since the 

communications link will only be available as long as the UAV is operable, specifications 

of the UAV can directly affect the performance and utility of the link.  Some of these 

specifications include the amount of time the UAV can stay aloft, the altitude at which it 

can operate, the payload that it can carry, available power to the payload, and options for 

launching and recovering the UAV. 

A. REQUIREMENTS FOR A UAV RELAY 

 In order to make a sound choice for the type of UAV selected, the constraints 

should be identified.  Not only will the UAV have to accommodate the size and power 

requirements for the communications equipment, but it must also remain airborne at an 

appropriate altitude for a substantial amount of time.  Unlike a satellite that is put into 

orbit and remains for upwards of 10 years, the UAV, or system of UAVs, will have to be 

launched and recovered much more often.  The type of UAV selected will determine how 

it is deployed.  If the deployment method favors only a handful of operational units, the 

benefits of this architecture may not be realized. 

1. Payload 
The UAV must be able to carry and house the communication equipment.  This 

includes the antennas, radios, routers, and racks for securing the equipment.  Since we’ve 

modeled the UAV RF payload on the DSCS III satellite in the analysis section, we’ll use 

some of those specifications for weight and power consumption here.  The total weight of 

the DSCS III satellite is about 2580 lbs, including solar arrays, batteries, thrusters, and 

antennas that won’t be used in this application.   The power supply provides 1.2 kW and 

is supported by three 35 Amp-hour Ni/Cd batteries.  Since the DSCS III has a main beam 

antenna EIRP of 40 dBW, we refer to the approximated antenna gain of 37.5 dB for the 



45 in. main beam antenna from the previous chapter and calculate the required amount of 

transmit power to be ( ) ( ) ( )EIRP 2.5 t tdB dB dB
P G= − = dBW , or 1.8 W.  [28]  

The proposed FSO system is very similar to the Terabeam Elliptica 7421i, but in 

order to successfully close the link at 2 Gbps and less than 61 10−⋅  BER, it was necessary 

to increase the size of the aperture as discussed in chapter IV.  The Elliptica’s dimensions 

are approximately 11 x 12 x 14 in., with a weight of about 14 lbs.  The power module is 3 

x 5 x 10 in. and weighs 3 lbs.  Increasing the aperture would certainly increase the size 

and weight of the transceiver, but not necessarily increase the power demands of the unit 

itself.  Since the aperture needs to be increased by roughly 2.7 times the current 10 cm 

diameter, a conservative three-fold increase will be made to each of the dimensions as 

well as the weight.  The final estimated size and weight of the FSO transceiver is 33 x 36 

x 42 in. and 42 lbs.  [30]  

Tracking systems must be employed for the FSO system.  The RF system should 

also use a tracking system in the event the UAV is not operating above the user, and also 

to track users within or nearby the strike group for ship-UAV-ship communications.   

Since the location of the UAV could give away the location of a unit, the ability for the 

link geometry to change makes the unit’s location more ambiguous.  The Elliptica 

transceiver has a beam steering mechanism built into the device, as shown in Figure  20. 
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Figure 20.   Beamsteering Mirrors in the Terabeam Elliptica 7421i 

 

The reason for this is to counteract the effects of building sway when the transceivers are 

mounted on tall buildings  [35].  This tracking system is meant for two relatively 

immobile structures and is likely not adequate for a UAV mounted system.     

When the RF signal reaches the UAV, it is demodulated and could either be 

converted to an optical signal and sent to the satellite or routed back through the RF 

antenna to another unit.  The router should be able to switch at a high speed to prevent a 

bottleneck in the link.  A candidate system, Cisco System’s 12008 Series Router, is 

selected.   It has a capacity of up to 40 Gbps bandwidth, and supports many different 

network interfaces.  The dimensions of the router are 24.0 x 17.3 x 21.2 in, and its weight 

is 187 lbs.  Typical power consumption is specified to be 1.62 kW.   [36] 

The total payload requirement is the sum of weight, space, and power needs of the 

RF and FSO equipment, the tracking system, and the networking hardware.  To estimate 

the power and weight requirements of the payload, we will follow Lambert and Casey’s 

postulated systems for an RF and FSO intersatellite link  [20] and add the networking 

hardware.  Both systems will use a gimbaled pointing system, with the RF system 

weighing 140 lbs and needing 150 W of power, and the FSO system weighing 106 lbs 
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and requiring 126 W  [20].  The total weight and power requirements are 396 lbs and 1.3 

kW.  A summary of the payload requirements is shown in Table  4. 

 Weight Power Required 

RF Components 140 lbs 150 W 

FSO Components 106 lbs 126 W 

Router 187 lbs 1.62 kW 

Total 433 lbs 1.9 kW 

Table 4. UAV Payload weight and power requirements 

 

2. Loiter Time 

The link is only available when the UAV is aloft.  In order to provide continuous 

access, a method of relieving UAVs when they run out of fuel or power must be 

employed.  If the UAVs have short loiter times, the operational cycle will be small, 

meaning more turnovers will need to take place.  Accident rates and maintenance costs 

are more influenced by the number of flights a UAV makes rather than the number of 

flight hours  [37].  So between launching and recovering more times or increasing the 

endurance of the UAV, extending the loiter time is favored to reduce the added 

complexity of maintaining the link.   

3. Altitude 

The UAV should operate at an altitude where it is above the highest clouds and in 

the portion of the atmosphere that has few particles that could cause scattering and 

absorption.  Figure  21 shows where different cloud types reside in layers of the 

atmosphere. 



 
Figure 21.   Cloud Types and Their Position in the Atmosphere (From  [20]) 

 

In the previous chapter, the altitude was set at 65,000 ft, or 19.8 km.  This puts the UAV 

at a level comfortably above the highest clouds.   

4. Deployability 
 Since naval units are expected to operate far from any land-based runways, the 

UAV should not be restricted to such a fixed infrastructure.  If a runway is needed, the 

UAV’s range and time on station should be sufficient so that a ship can take advantage of 

the link without cycling through many UAVs.  If the UAV can be deployed from the ship 

itself, the number of flights may be reduced since there will be less distance for the UAV 

to transit to the operating area.  However, while it may be relatively simple for an aircraft 

carrier to launch and recover UAVs, it may prove more difficult for a destroyer, or a 

submarine.   
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B. TYPES OF UAVS 
There are several different designs and purposes for employing UAVs, but we 

will restrict our review to the high-altitude, long-endurance (HALE) platforms.  In this 

category, there are fixed wing, vertical take off and landing (VTOL), and lighter than air 

design schemes.  Within these schemes, examples of UAVs are presented with their 

system specifications to determine the most suitable candidate. 

1. Fixed Wing 
Fixed wing UAVs are currently in service supporting Operation Enduring 

Freedom and Operation Iraqi Freedom in surveillance as well as attack roles.  Their 

proven utility and flexibility have made them an important asset, used by all the U.S. 

military services as well as those in the intelligence community.  [38]  

a. Predator B 

The Predator B is an enlarged HALE version of General Atomic’s 

medium-altitude RQ-1 Predator.  The Predator B has three variants, the Altair, built 

primarily for NASA, the Mariner, a proposed candidate for the U.S. Navy’s Broad Area 

Maritime Surveillance program, and the Hunter-Killer, a U.S. Air Force version capable 

of carrying up to 14 Hellfire missiles.  The Predator B, shown in Figure  22 as the 

Mariner, retains much of the same appearance as the original Predator except for the tail 

configuration and added fuel tank.   



 
Figure 22.   General Atomics’ Predator B, Altair Variant Flying as the Mariner (From 

 [39]) 
 

Some of the internals of the Mariner variant are shown in Figure  23.  Of particular note 

are the satellite antenna, the maritime surveillance radar in the pod on the Mariner’s 

belly, and the under-nose targeting system and radar.   [39]  

 
Figure 23.   Internal detail of Mariner BAMS proposal (From  [39]) 
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The specifications of the Predator B, Mariner variant are summarized in 

Table  5. 

 

Wing span: 26.21 m (86 ft 0.0 in) 
Length overall: 11.03 m (36 ft 2.4 in) 
Fuselage max width: 1.13 m (3 ft 8.4 in) 
Height overall: 3.59 m (11 ft 9.5 in) 
Wheelbase: 3.09 m (10 ft 1.5 in) 
Propeller diameter: 2.79 m (9 ft 2.0 in) 
Payload bay volume (total): 1.30 m³ (46.0 cu ft) 
Max fuel weight: 2,722 kg (6,000 lb) 
Max payload (internal): 522 kg (1,150 lb) 
Max payload (external): 907 kg (2,000 lb) 
Max level speed: 240 kt (444 km/h; 276 mph) 
Max operating altitude: 15,850 m (52,000 ft) 
Endurance: >49 h 

Table 5. Specifications for Predator B, Mariner Variant (After  [39]) 

 

With 10 kW of power available and ample payload room for the networking hardware, 

the Predator B may be a suitable choice.  As shown in Figure  23, the RF dish antenna is 

on top of the aircraft.  In the ship-UAV-satellite architecture, the RF dish antenna would 

need to be pointed downward or the UAV would have to fly inverted.   With a maximum 

fuselage width of 1.13 meters, the RF antenna size may have to be reduced, since the 

previous link budget used the DSCS III antenna diameter of 1.1 m.  An external pod, 

similar to the targeting turret in the front of the Mariner, should be attached to the top of 

the UAV to house the FSO transceiver.  Unfortunately, the maximum operating altitude 

is beneath our threshold.  Changes would need to be made to the laser link in terms of 

antenna size or power provided, but the atmospheric absorption and scattering due to 

clouds should be fairly minimal as shown previously in Figure  21.  The additional free 

space loss is only about 2 dB, easily overcome by modifying the FSO transceiver. [39]  

Unfortunately, this aircraft is quite large and would need to be launched 

and recovered from a runway  [39].  It may be possible to install arresting gear and to 



fortify the landing gear for aircraft carrier operations, but a small ship would not be able 

to launch this particular UAV.   

b. Global Hawk 

The RQ-4A Global Hawk, like the Predator B, is another large fixed wing 

UAV capable of high altitude operations for extended periods of time.  Figure  24 shows 

the mission concept for the Global Hawk.   

 
Figure 24.   Global Hawk Mission Concept (From  [40]) 

 

The Global Hawk is used in a surveillance and reconnaissance role, as opposed to the 

Predator which has the ability to carry and fire weapons.  Like the Predator, the Global 

Hawk has the ability to communicate via satellite with its up-facing antenna shown in 

Figure  25. 
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Figure 25.   Global Hawk Cutaway (From  [40]) 

 

Because of the antenna orientation, modifications would again need to be made so that 

Global Hawk could communicate with units below.  A turret should be added to house 

the FSO transceiver and tracking apparatus as well.  The specifications for the Global 

Hawk are shown in Table  6. 

 

Wing span:  35.41 m (116 ft 2.0 in)  
Length overall:  13.51 m (44 ft 4.0 in)  
Fuselage max width:  1.45 m (4 ft 9.0 in)  
Height overall:  4.39 m (14 ft 5.0 in)  
Weight empty:  4,173 kg (9,200 lb)  
Max fuel weight:  6,577 kg (14,500 lb)  
Max payload:  907 kg (2,000 lb)  
Loiter speed:  343 kt (635 km/h; 395 mph)  
Loiter altitude:  15,240-19,810 m (50,000-65,000 ft)  
Service ceiling:  >19,810 m (65,000 ft)  
Max endurance:  35 h  

Table 6. Specifications for Global Hawk, RQ-4A (After  [40]) 

 

The available 25 kW of power, large payload capacity, and high altitude make the Global 

Hawk an attractive possibility as the UAV relay.  [40]  
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As with the Predator B, this UAV is quite large and heavy.  Figure  26 

lends perspective on the size of this aircraft. 

 

 

 
Figure 26.   Global Hawk at Beale Air Force Base (From  [40]) 

 

Even an aircraft carrier may find it difficult to launch and recover the Global Hawk with 

its large wingspan, making a base with a runway essential.   

c. Helios 
The Helios is an experimental solar powered UAV capable of tremendous 

endurance.  Designed by AeroVironment Inc. for a NASA program at Dryden Flight 

Research Center, the Helios has wings covered with solar panels and is propelled by eight 

two-bladed propellers.  The solar cells generate 42 kW of power and fuel cells charge 

during the day for night flights.  This is a large advantage when fuel costs are compared.  

The Helios prototype is shown in Figure  27. 
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Figure 27.   Helios Prototype in July 2001 (From  [41]) 

 

The specifications for the Helios are shown in Table  7.  [41] 

 

Wing span: 75.29 m (247 ft 0.0 in) 
Length overall: 3.66 m (12 ft 0.0 in) 
Weight empty: Approx 726 kg (1,600 lb) 
Max payload: 100 kg (220 lb) 
Max level speed: 28 kt (51.5 km/h; 32 mph) 
Altitude:  15,240-21,340 m (50,000-

70,000 ft) 
Endurance:  6 months 

Table 7. Specifications for Helios (After  [41]) 

 

Lacking any satellite communication equipment, the necessary payload 

weight for the RF and the FSO systems will exceed the maximum payload of the Helios.  

The largest of the fixed winged aircraft discussed here, ship deployment is out of the 

question.  However, because of its long endurance, a network of aloft UAVs could be 

employed.  The UAVs could loiter in their locations even if there were no users nearby.  
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Then, if a unit came into range, the Helios would be ready to facilitate high speed 

communications.   An added benefit of this architecture is that the position of a unit is not 

given away since the UAV will be aloft even when no users are communicating.  

Unfortunately, many UAVs would be needed to provide global coverage.  A UAV, or a 

network of UAVs could move with the strike group, reducing the number of UAVs and 

handoffs required, but providing an adversary with a possible means of locating deployed 

units. 

2. VTOL  
UAVs that have the ability to take off and land without runways can be employed 

on small ships easier than the previously discussed larger fixed wing aircraft.  

Unfortunately, there are relatively few HALE UAVs that have this capability.  One 

exception under development is the A-160 Hummingbird.  The Hummingbird is being 

developed under DARPA’s Advanced Technology Demonstration project.  A computer 

graphic of the Hummingbird is shown in Figure  28.   

 
Figure 28.   A-160 Hummingbird Illustration (From  [42]) 

 

The specifications for the Hummingbird are summarized in Table  8.  [42] 
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Main rotor diameter  9.75 m (33 ft) 
Fuselage length 10.7 m (35 ft) 
Payload bay volume in nose:  3.1 m³ (110 cu ft) 
Max payload 136 kg (300 lb) 
Max level speed Approx 140 kt (259 km/h; 161 mph) 
Max operating altitude 9,145 m (30,000 ft) 
Hovering ceiling OGE 4,570 m (15,000 ft) 
Range 2,500 nm (4,630 km; 2,877 miles) 
Endurance 30-40 h 

Table 8. Specifications for A-160 Hummingbird (From  [42]) 

 

Although the ability for the Hummingbird to hover in one place may make the 

ship-board tracking system simpler, and the endurance is very good, mounting the 

antennas may be somewhat difficult.  The overhead rotors could cause adverse affects to 

the FSO signal, unless the transceiver can be mounted above or to the side of the rotors.  

The diameter of the main rotor is large, but smaller than the rotors of some helicopters 

that deploy from U.S. Navy Destroyers  [43].  The altitude is also well below the desired 

threshold. 

3. Lighter than Air 

The last group of HALE UAVs under consideration is the lighter than air (LTA) 

variety.  This category involves platforms that are essentially balloons or blimps.   

a. 420K Aerostat 

Lockheed Martin’s 420K is a tethered aerostat used for radar surveillance.  

It has the ability to detect, identify and track targets as well as relay data.  Unfortunately, 

because it is tethered, its altitude and maneuverability is limited by its connection to the 

ground.  The 420K could be deployed from a ship, but aircraft would need to avoid the 

tether and harsh winds could prevent deployment.  Table  9 shows the specifications, and 

Figure  29 shows a picture of the 420K at a mooring station.  

 

 



 

Length 63.55 m (208 ft 6.0 in) 
Max diameter 21.18 m (69 ft 6.0 in) 
Radome diameter: 12.19 m (40 ft 0.0 in) 
Antenna: Width x Height 8.84 m (29.0 ft) x 5.18 m (17.0 ft) 
Payload capability:  952.5 kg (2,100 lb) 
Operating altitude 4,575 m (15,000 ft) 
Radar detection range 200 n miles (370 km; 230 miles) 
Endurance 5-7 days 

Table 9. Specifications for Lockheed Martin 420K (After  [44]) 

 

 
Figure 29.   Lockheed Martin 420K Aerostat (From  [44]) 

 

This balloon will not satisfy the needs for the UAV relay.  Although the endurance and 

payload are adequate, the limited altitude and the requirement for a tether are undesirable.   

b. Aerosphere Airship 
TechSphere Systems International’s Aerosphere is a spherical shaped, 

high altitude LTA airship.  The Aerosphere has its own station keeping system and does 

not require tethers.  The airship is designed to act in a surveillance role as well as a 
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communications relay.  Figure  30 shows an illustration of the Aerosphere and its possible 

coverage area.  [45] 

 
Figure 30.   Footprint of TechSphere’s Aerosphere (From  [46]) 

 

Under development and testing, the Aerosphere is projected to have a very long 

endurance time and also be able to lift a relatively heavy payload.   Table  10 shows the 

specifications.   

 

Max diameter 300 ft 

Engines 3 
Operating altitude 20,000 m (about 65,000 ft) 
Endurance 6 months, up to 1 year 

Table 10. Specifications for Techsphere’s Aerosphere (After  [47]) 
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Power and payload capacity and specifications are not available; however, the Naval Air 

Systems Command has conducted testing with the smaller 62 ft diameter Aerosphere that 

has a 22,000 ft ceiling.  The payload of this craft is about 1000 lbs  [47].  The smaller 

Aerosphere only has a two day endurance.  [48] 

If the power and payload available are adequate, the Aerosphere may be 

an excellent choice.  Its configuration as a wireless relay shown in Figure  30 is well 

suited for the RF portion of the ship-UAV-satellite relay.  Again, a FSO transceiver and 

tracking device will need to be attached.  Although its diameter is most likely too large 

for deployment by a ship, the altitude and extremely long loiter time make the 

Aerosphere an attractive pre-positioned communications relay.   

C. CHAPTER SUMMARY 
Several options and platforms for the UAV relay were presented.  Since none of 

them have an overhead FSO transceiver, all of the UAVs would need to be retrofitted 

with such a device.  The fixed wing HALE UAVs require a runway nearby, but their 

specifications indicate feasibility, especially with the long endurance of the Helios, 

making launching and recovery less frequent and keeping fuel costs low.  If the 

Aerosphere can be fitted with the necessary communications payload, its altitude and 

long loiter time make it an ideal candidate.    

Next, experimentation with a commercial FSO system and IEEE 802.11b links is 

discussed.  Portable 802.11b links will represent the RF portion of the ship-UAV-satellite 

communications architecture.  The effect of having such a large bandwidth link in concert 

with the RF links in a variety of configurations will be shown.   



54

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 

 



55

VI. EXPERIMENT 

Similar to the proposed ship-UAV-satellite link, a composite RF and FSO 

network was set up on a much smaller scale.  The goal of the experiment was to 

determine if the addition of a fast FSO link would affect the overall data transfer when 

the user has a slower RF link.  If the FSO link or the routing from the RF to the FSO link 

introduces packet errors in the transfer, transmission control protocol (TCP) will cause a 

retransmission of those packets  [49] and slow down the overall transfer.   

A. SET UP 

The experiment took place on the roof of Spanagel Hall at the Naval Postgraduate 

School in Monterey, CA on the morning of August 24, 2005.  The weather conditions at 

the nearby Monterey Airport are summarized in Table  11. 

   

Time 1000 1100 1200 
Wind  
(direction and mph) W 5 SW 6 SW 5 

Visibility (miles) 5 5 8 

Weather Mist Mist  

Sky Conditions Overcast Overcast Overcast 

Ceiling (feet) 300 300 500 

Temperature (°F) 55 55 55 

Dewpoint (°F) 53 53 52 

Relative Humidity 93 93 89 

Barometric 
Pressure (inches) 29.82 29.82 29.82 

Table 11. Weather conditions at the Monterey Airport on August 24, 2005 (After  [50]) 

 

 

 



The ship to UAV portion was modeled with 2 Hewlett Packard h6315 iPAQ Pocket PCs 

and a Dell Inspiron 9300 (i9300) laptop as shown in Figure  31. 

 
Figure 31.   Hewlett Packard h6315 iPAQs, Dell i9300 and Terabeam Elliptica 7421i. 

 

The iPAQs and the i9300 laptop were all enabled with IEEE 802.11b (Wi-Fi) radios that 

have a maximum data rate of 11 Mbps  [51].  The UAV to satellite link was represented 

with the i9300 connected to a Dell Inspiron 5150 (i5150) laptop via a pair of Terabeam 

Elliptica 7421i FSO transceivers that have a maximum data rate of 100 Mbps  [30].  The 

distance between the iPAQs was about 2 ft, while the distance between the iPAQs and the 

i9300 was roughly 3 ft.    The separation of the two FSO transceivers was about 300 ft.  

Line of sight was maintained for all links.  Figure  32 shows the setup from the RF link 

side, with the other Elliptica and the i5150 in the far background. 
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Figure 32.   Experiment set up with RF link in the foreground 

 

The experiment consisted of transferring a 1.36 MB data file from the iPAQs to the i5150 

using Server Message Block (SMB) protocol and TCP.  SMB is a protocol that allows 

communication and file sharing between computers  [52], while TCP provides a reliable 

connection between them  [49].  A packet analyzer, Ethereal, was installed on the i5150 

and used to determine the amount of time it took for the file to transmit.  In order to 

determine how the FSO link affected the transmission, Ethereal was also installed on the 

i9300 and the file transfer was repeated without the laser link.  In a variety of 

configurations discussed next, the iPAQs used a Wi-Fi link to the i9300 and the i9300 

relayed to i5150 across the FSO link.  The i9300 and i5150 each connect to the  

“Data” port on the FSO transceivers by a Category-5 Ethernet cable as shown in Figure 

 33. 
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Figure 33.   Elliptica 7421i Ethernet connection 

 
 
B. NETWORK CONFIGURATION 

In order to communicate to one another within the network, all the devices are 

provided with addresses, as shown in Table  12, and the layout of the entire network 

showing IP addresses is illustrated in Figure  34.   

 

Device Wi-Fi port 

IP Address 

Wi-Fi port   

MAC Address 

Ethernet port  

IP Address 

Ethernet port 

MAC Address 

i9300 192.168.0.1 00:11:f5:22:39:27 192.168.0.100 00:11:43:76:25:89

i5150 N/A N/A 192.168.0.101 00:0f:1f:23:16:fa 

iPAQ h6315 192.168.0.10 00:0b:6b:54:96:cf N/A N/A 

iPAQ h6315 192.168.0.15 00:0b:6b:54:7b:15 N/A N/A 

Elliptica 

7421i 

N/A N/A 192.168.0.200 00:03:55:01:00:7b

Elliptica 

7421i 

N/A N/A 192.168.0.201 00:03:55:01:00:4a

Table 12. IP and Hardware address for devices used 
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Optical Link

Wi-Fi Links

192.168.0.1
192.168.0.100

192.168.0.200

192.168.0.15 192.168.0.10

192.168.0.201

192.168.0.101

i9300

i5150

iPAQiPAQ

Elliptica 7421i

Elliptica 7421i

 
Figure 34.   Diagram of entire network showing IP addresses 

 

The connections between the i9300 and i5150 laptops to the Elliptica transceivers are 

Category-5 Ethernet cables.  Only the i9300 requires both a Wi-Fi and Ethernet address, 

since it acts as a router between the RF and the FSO links.   

There are several configurations possible in the network.  First, the RF network 

was established so that the iPAQs communicated directly to the i9300.  This first 

configuration did not support multi-hop, or using one of the Pocket PC’s as a relay.  In 
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the ship-UAV link, there could be a situation where a ship was not in range of the UAV, 

but was in range of another ship that did have connectivity.  The scenario in Figure  35 

illustrates this case where the USS Essex had the ability to communicate with the USS 

Chancellorsville via the USS Fort McHenry and the airborne P-3 during the U.S. Navy’s 

Trident Warrior 2003 exercise  [53].  To simulate this situation, the routing tables of one 

of the iPAQs and the i9300 were changed.  Even though both of the Pocket PC’s were in 

range of the i9300, one of the iPAQs was forced to transmit to the other iPAQ, and the 

i9300 was forced use this same relay.  Before the transfer took place, the traceroute 

network utility was used to verify the paths were correctly set in place.  Finally, this 

multi-hop network was tested when both iPAQs transmitted at the same time.   

 
Figure 35.   USS Essex communicating to USS Chancellorsville in Trident Warrior 03 

(After  [53]) 
 

The network and data transfer configurations are shown in Figures  36 through  40.  

In Figures  36 and  37, one iPAQ communicates while the other does not.  In Figure  38, 

both iPAQs communicate directly with the i9300 simultaneously.  In Figure  39, one 

iPAQ communicates and uses the other as a relay.  In Figure  40, both iPAQs transmit the 

data file, and one of them is used as a relay. 
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Figure 36.   iPAQ 192.168.0.15 

transmits to i9300 
Figure 37.   iPAQ 192.168.0.10 

transmits to i9300 

 

 

 
Figure 38.   Both iPAQs transmit to i9300 
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Figure 39.   iPAQ 192.168.0.10 

transmits to i9300, using 192.168.0.15 
as a relay 

Figure 40.   iPAQ 192.168.0.10  
transmits to i9300, using 192.168.0.15 as a 

relay, while 192.168.0.10 also transmits 

 

Since the iPAQs are sending the file to the i5150, the i9300 acts as a router.  The i9300 

sends the file to the Elliptica transceiver, transferring the file over the optical link, and 

reaches the i5150.  After completing all file transfers for the configurations shown in 

Figures  36 through  40, the transfers were repeated, but sent to the i9300 instead of the 

i5150, so that the Wi-Fi link performance could be analyzed without the additional 

routing and transmission over the FSO link. 

Within Ethereal, the packets were analyzed starting from the SMB “Open AndX 

Request” command and stopping at the 60 byte TCP packet acknowledging the SMB 

“Find Close2 Response” command.  The “Open AndX Request” was sent when the iPAQ 

initiated transfer of the file to the i5150.  The i5150 looked for the file in the specified 

directory, and when it was not found, the i5150 created a file of the same name and 

allowed the transfer to begin.  Then, SMB “Write” packets allowed the incoming data to 

be put it into the created file.  Finally, the file was closed with the “Find Close2 

Response” command after verification that the data in the file had successfully been 

transferred and the file information had been set.  File information consists of parameters 

about the file such as when the file was created, when it was last accessed, and file 
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attributes such as hidden, encrypted, or read only.  A TCP/IP packet acknowledged the 

closing of the file and no more communication took place between the iPAQ and the 

i5150.   By restricting the packet capture to this range, any packets sent before the “Open 

AndX Request” or after the final TCP packet were not involved with the file transfer did 

not interfere with the analysis.   

C. RESULTS 
 The results of the data transfers over all the previously discussed network 

configurations are shown in the following figures, produced by Ethereal.  Each figure 

consists of a summary of the transfer and a graph showing the data rate vs. the time it 

took to send the file.  Within the summary, a filter was used to show the number of TCP 

retransmissions.  Since TCP is a reliable transport layer protocol, if a packet is sent with 

an error, TCP requires the data to be retransmitted until it arrives without error  [49].  So 

for every TCP retransmission there is at least one error in one packet.  The column named 

“Captured” shows the entire transfer, while “Displayed” shows only the retransmitted 

packets.  The need to retransmit packets is one reason for different amounts of packets 

being captured from one transfer to the next. 

Figure  41 shows the summary and the data rate when only iPAQ 192.168.0.15 

transmits to the i5150.  For comparison, Figure  42 shows the summary and data rate of 

this configuration when the file is sent to the i9300 and the FSO link is not used.   
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192.168.0.10

  

192.168.0.10 

Figure 43.   iPAQ 192.168.0.10 sends to 
i5150 

Figure 44.   iPAQ 192.168.0.10 sends to 
i9300 

 

Figure  45 shows the data transfer from both iPAQs to the i5150 at the same time.  The 

summary on the left shows the retransmissions for 192.168.0.15 and the summary on the 

right shows the retransmissions for 192.168.0.10.  The graph below the summaries shows 

the data rate of the transfers.  The black line is represents 192.168.0.15’s data rate, while 

the red indicates the data rate for 192.168.0.10.  The blue line is the sum of their data 

rates over the transfer time.    A comparison of the blue line in Figure  45 to the data rate 

graphs in Figures  41 and  43 shows similar results.  This may indicate a maximum data 

rate for the link. 
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Figure 45.   Both iPAQs transmit to the i5150 at the same time 

 

Figure  46 shows the summary of the data being transferred when both iPAQs transmit to 

the i5150 at the same time.  By looking at the blue line representing the total data rate in 

Figure  45 and the summary in Figure  46, it appears that the data rate for the link is 

limited and the iPAQs share the link equally, since the individual iPAQs each have an 

average data rate of roughly half the total data rate. 
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192.168.0.15 and 192.168.0.10

 
Figure 46.   Total summary of both iPAQs transmitting to i5150 at the same time 

 

Figure  47 shows the results when both iPAQs transmit to the i9300 simultaneously.  As 

in the case where they both send their files to the i5150, they appear to share the available 

link data rate equally.   

   

 192.168.0.15 192.168.0.10

 
Figure 47.   Both iPAQs transmit to i9300 at the same time 
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The time required to transfer the file and the average data rate attained by each 

iPAQ, as well as the overall data transfer, shown in Figure  48, suggest that the link is not 

limited by the FSO portion of the network.  The Wi-Fi link or the SMB protocol may be 

responsible for limiting the data rate.  If the FSO portion of the network were limiting the 

maximum data rate, the time needed to send the file to the i9300 would be less than the 

time needed to send the file to the i5150, but this is not the case. 

  

192.168.0.15 and 192.168.0.10

 
Figure 48.   Total summary of both iPAQs transmitting to i9300 at the same time 

 

In the next configuration, 192.168.0.10 is the only iPAQ that transmits, but it uses 

192.168.0.15 as a relay.  The iPAQ that becomes the relay does not send its own data, but 

passes along packets from sender to receiver.  Figure  49 shows the transfer to the i5150, 

while Figure  50 shows the transfer to the i9300. 
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192.168.0.10

        

192.168.0.10

 
Figure 49.   iPAQ 192.168.0.10 sends to 

i5150, using 192.168.0.15 as a 
relay, while  192.168.0.15 does not 

send 

Figure 50.   iPAQ 192.168.0.10 sends to 
i9300, using 192.168.0.15 as a 

relay,  while  192.168.0.15 does not 
send 

 

The results from Figures  49 and  50 show that the additional hop does not 

significantly change the time it takes for the iPAQ to transfer the file, nor does it produce 

a large increase of packet retransmissions.  The fact that the file transfer does not take 

longer, despite two iPAQs effectively competing for access to the wireless medium is an 

interesting result.  The set-up of the relay was verified with traceroute from the 

originating iPAQ, as well as the i9300 to confirm that 192.168.0.15 was being used as a 

relay and not being bypassed.  Aside from a human error in configuring the routing 

tables, another possible reason for the result is that the links between the iPAQs and the 

link between the iPAQ and the i9300 could be on non-interfering Wi-Fi channels.  This 

would enable both iPAQs to transmit or receive simultaneously, but only if the relay had 

more than one Wi-Fi card.  Unfortunately, this is not the case.  The author believes that 

the reason for this result is due to bridging the Ethernet and Wi-Fi connections.  The Wi-

Fi network card on the i9300 does support promiscuous mode.  As a result, the data rate 

capacity indicated on the Windows XP Taskbar drops from 11 Mbps to 1 Mbps.  The 
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actual throughput is less.  Between the iPAQs, the data rate stays high, but between the 

relay iPAQ and the i9300, the throughput drops.  Effectively, the delay is between 

192.168.0.15 and i9300, and the additional hop slows transmission by an insignificant 

amount.  Microsoft describes problems with non-promiscuous mode Wi-Fi cards in  [54]. 

 The last test also uses this multi-hop configuration, but instead of just one iPAQ 

transmitting, both devices send the file to the i5150.  Figure  51 shows the results of the 

transfer for the iPAQs to the i5150.  As before, the data rate of the 192.168.0.15 is shown 

as the black line, while the red line is the data rate for 192.168.0.10.  The blue line on the 

graph represents the sum of the individual data rates. 

 

192.168.0.15 192.168.0.10

 
Figure 51.   Both iPAQs transmit to i5150, and 192.168.0.15 acts as a relay  
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Figure  52 provides the summary of the entire transfer to the i5150.     

192.168.0.15 and 192.168.0.10

 
Figure 52.   Total summary of both iPAQs transmitting to the i5150, while 

192.168.0.15 acts as a relay 

 

The results shown in Figures  51 and  52 are very similar to the previous results in Figures 

 45 and  46 when the iPAQs communicated directly to the i9300 and did not use a relay.  

This is another indication that the additional hop at high data rate does not produce large 

amounts of delay or packet errors, even when the iPAQs are sharing the link to 

communicate.   

 Finally, the iPAQs both transmitted to the i9300 using the previous relay 

configuration.  Figure  53 shows the results for the individual iPAQs with the blue line on 

the graph indicating the combined data rate for the link. 
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192.168.0.15 192.168.0.10

 
Figure 53.   Both iPAQs transmit to i9300, and 192.168.0.15 acts as a relay  

 

Figure  54 provides the overall results for the iPAQs’ transmission to the i9300 using 

192.168.0.15 as a relay.  Again, this Wi-Fi only network does not have a higher average 

data rate or significantly less packet retransmissions.   
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192.168.0.15 and 192.168.0.10

 
Figure 54.   Total summary of both iPAQs transmitting to the i9300, while 

192.168.0.15 acts as a relay 
 
 

D. CHAPTER SUMMARY 
Analysis was performed on data transfers across a computer network that used RF 

links and a FSO link.  Two iPAQ Pocket PC’s sent a file across this network to a laptop 

in a variety of configurations, and the resulting data rate and the number of TCP 

retransmissions were recorded.  When the iPAQs sent data files simultaneously, the time 

to transfer the files took roughly twice as long as when they transmitted only one file.  It 

was shown that the end to end data rate was not limited by the FSO portion of the link 

and that additional hops at high data rate had no significant impact in the overall data rate 

or number of packets containing errors.  The ship-UAV-satellite architecture should 

perform at least as well in terms of error rate and data throughput.  The ship to ship 

antennas could be directional as opposed to the omnidirectional antennas used on the 

iPAQs and the RF links could operate simultaneously without interference by using 

different frequencies. 

The next chapter discusses the conclusions of this research and presents 

recommendations for future work.  
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VII. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

This thesis examined the required components and parameters necessary for a 

communications system that includes an RF link from a ship to a UAV and a FSO link 

from the UAV to a satellite.  A brief discussion was made of the Transformational 

Communications Architecture in development and the network-centric operations it can 

enable.  It was shown that by using an FSO-enabled UAV as a relay, a substantial 

improvement in data rate could be made and the size of the user’s antenna can be reduced 

from a current satellite communication system.  The WSC-6 (V) 9 has a 1.52 m antenna 

and communicates at a 2.048 Mbps capacity with the DSCS III satellite.  The ship-UAV-

satellite system communicates at 2 Gbps with a 1 ft antenna.  A survey of possible UAV 

candidates and their potential to function as a high-altitude node was conducted.  An 

experiment was done showing that the additional routing of information and the inclusion 

of an FSO link did not negatively affect the overall data transfer. 

 Since a high altitude UAV is more than three orders of magnitude closer to the 

earth’s surface than a geostationary satellite, the link budget margin for a ship to UAV 

link greatly increases compared to a link from ship to satellite.  This surplus margin can 

be used to increase the data rate and reduce the size of the antenna.  The high bandwidth 

and large data rate capacity of FSO links cannot be realized in heavy fog, therefore fitting 

the FSO transceiver to a UAV in the upper atmosphere helps to ensure continuous 

operational capability.  Several HALE UAVs currently in operation or in development 

are suitable for use as an airborne router.  Experimental results from chapter VI indicate 

that in configurations where the supported data rate of the RF link is slower than the FSO 

link, the additional routing and optical transmission do not cause an increase in packet 

errors or a decrease in data rate.   

B. FUTURE WORK 
This thesis focused on the feasibility of a ship-UAV-satellite communications 

architecture on the link level.  The expansion of the individual link to a network, or a  
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network of networks is needed to show how it can perform in FORCEnet or the TCA.  

When multiple units are within range of the UAV, the throughput of the composite link 

should be analyzed. 

A software-based simulation and networking model with the ability to support 

different link characteristics could be developed.  As shown in this thesis, different 

wavelengths of electromagnetic radiation are transmitted through the atmosphere with 

varying degree.  Since the amount of received power and signal to noise ratio can affect 

BER, or data rate for a fixed BER, simulation of various transmission frequencies and 

several networking configurations in different environmental conditions could show 

widespread operational feasibility. 

In order for the UAV to serve multiple ships in a strike group at the same time, 

aspects of the RF antenna and radio system should be explored.  By sacrificing gain in a 

single direction, a low directivity antenna could be used to expand the field of view.  

Alternatively, a multi-beam phased array antenna could be installed.  To prevent 

interference among users, a method to share the RF channel is required.  Whether this is 

accomplished by frequency division multiple access, code division multiple access, or 

another scheme, removing traffic problems caused by multiple users is necessary to 

maximizing the benefit of the multiple ship-UAV-architecture. 
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